Aharonov-Bohm scattering on parallel flux lines of the same magnitude

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 212573
(http://iopscience.iop.org/0305-4470/21/11/016)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 05:37

Please note that terms and conditions apply.

# Aharonov-Bohm scattering on parallel flux lines of the same magnitude 

Zhi-Yu Gu† and Shang-Wu Qian $\ddagger$<br>$\dagger$ Beijing Teacher's College, Division, Bai Guang Street, Beijing, People's Republic of China $\ddagger$ Center of Theoretical Physics, CCAST (World Laboratory), Beijing, People's Republic of China and Department of Physics, Peking University, Beijing, People's Republic of China

Received 21 December 1987, in final form 22 February 1988


#### Abstract

The problem of Aharonov-Bohm scattering on parallel flux lines of the same magnitude is solved exactly and the differential cross section is calculated.


## 1. Introduction

The quantum mechanical scattering of electrons by a flux line was analysed by Aharonov and Bohm (1959). Since then Aharonov-Bohm scattering problems have been solved exactly only for the case of a single flux tube (Aharonov et al 1984, Brown 1985, Gauthier and Rochon 1985). In this paper we shall further solve exactly the AharonovBohm scattering on parallel flux lines of the same magnitude. In $\S 2$ we derive a simplified form of the vector potential in elliptical coordinates. In § 3 we solve exactly the Schrödinger equation by means of Mathieu functions. In $\S 4$ we obtain the differential cross section.

## 2. Vector potential

Let $0 X Y$ be the coordinate plane perpendicular to two flux lines having coordinates $(a, 0)$ and $(-a, 0)$. We choose two polar coordinates $\left(\rho_{1}, \phi_{1}\right)$ and ( $\left.\rho_{2}, \phi_{2}\right)$ with these two points as poles. In the Coulomb gauge, the vector potential is

$$
\begin{equation*}
\boldsymbol{A}=\frac{\Phi}{2 \pi}\left(\frac{\boldsymbol{e}_{\phi_{1}}}{\rho_{1}}+\frac{\boldsymbol{e}_{\phi_{2}}}{\rho_{2}}\right) \tag{1}
\end{equation*}
$$

where $\Phi$ is the flux of the flux lines and $\boldsymbol{e}_{\phi_{1}}$ and $\boldsymbol{e}_{\phi_{2}}$ are the unit vectors in the transverse direction of the two polar coordinates. In terms of rectangular coordinates

$$
\begin{equation*}
\boldsymbol{e}_{\phi_{1}}=\frac{-y \boldsymbol{i}+(x-a) \boldsymbol{j}}{\left[(x-a)^{2}+y^{2}\right]^{1 / 2}} \quad \quad \boldsymbol{e}_{\phi_{2}}=\frac{-y \boldsymbol{i}+(x+a) \boldsymbol{j}}{\left[(x+a)^{2}+y^{2}\right]^{1 / 2}} . \tag{2}
\end{equation*}
$$

When we use elliptical coordinates, the transformation equations are

$$
\begin{equation*}
x=a \cosh \mu \cos \theta \quad y=a \sinh \mu \sin \theta \tag{3}
\end{equation*}
$$

the metric coefficients are

$$
\begin{align*}
& h_{\mu}=\left[\left(\frac{\partial x}{\partial \mu}\right)^{2}+\left(\frac{\partial y}{\partial \mu}\right)^{2}\right]^{1 / 2}=a\left(\cosh ^{2} \mu-\cos ^{2} \theta\right)^{1 / 2} \equiv h \\
& h_{\theta}=\left[\left(\frac{\partial x}{\partial \theta}\right)^{2}+\left(\frac{\partial y}{\partial \theta}\right)^{2}\right]^{1 / 2}=a\left(\cosh ^{2} \mu-\cos ^{2} \theta\right)^{1 / 2} \equiv h . \tag{4}
\end{align*}
$$

The relations between the unit coordinate vectors $\boldsymbol{e}_{\mu}, \boldsymbol{e}_{\theta}$ and $\boldsymbol{i}, \boldsymbol{j}$ are

$$
\begin{align*}
& \boldsymbol{i}=\frac{1}{h} \frac{\partial x}{\partial \mu} \boldsymbol{e}_{\mu}+\frac{1}{h} \frac{\partial x}{\partial \theta} \boldsymbol{e}_{\theta}=\frac{a}{h}\left(\sinh \mu \cos \theta \boldsymbol{e}_{\mu}-\cosh \mu \sin \theta \boldsymbol{e}_{\theta}\right) \\
& \boldsymbol{j}=\frac{1}{h} \frac{\partial y}{\partial \mu} \boldsymbol{e}_{\mu}+\frac{1}{h} \frac{\partial y}{\partial \theta} \boldsymbol{e}_{\theta}=\frac{a}{h}\left(\cosh \mu \sin \theta \boldsymbol{e}_{\mu}+\sinh \mu \cos \theta \boldsymbol{e}_{\theta}\right) . \tag{5}
\end{align*}
$$

In terms of elliptical coordinates (1) becomes

$$
\begin{equation*}
\boldsymbol{A}=\frac{\Phi\left(-\sin \theta \cos \theta \boldsymbol{e}_{\mu}+\sinh \mu \cosh \mu \boldsymbol{e}_{\theta}\right)}{\pi a\left(\cosh ^{2} \mu-\cos ^{2} \theta\right)^{3 / 2}} \tag{6}
\end{equation*}
$$

Now we simplify the form of the vector potential by a gauge transformation. The new vector potential is
$\boldsymbol{A}^{\prime}=\boldsymbol{A}+\nabla \Lambda=\frac{1}{h}\left(\frac{-\Phi}{\pi} \frac{\sin \theta \cos \theta}{\cosh ^{2} \mu-\cos ^{2} \theta}+\frac{\partial \Lambda}{\partial \mu}\right) \boldsymbol{e}_{\mu}+\frac{1}{h}\left(\frac{\Phi}{\pi} \frac{\sinh \mu \cosh \mu}{\cosh ^{2} \mu-\cos ^{2} \theta}+\frac{\partial \Lambda}{\partial \theta}\right) \boldsymbol{e}_{\theta}$.
Letting the coefficient of $e_{\mu}$ be equal to zero, we obtain

$$
\begin{equation*}
\frac{\partial \Lambda}{\partial \mu}=\frac{\Phi}{\pi} \frac{\sin \theta \cos \theta}{\cosh ^{2} \mu-\cos ^{2} \theta} . \tag{8}
\end{equation*}
$$

Integrating over $\mu$ we obtain
$\Lambda=\frac{\Phi}{2 \pi}\left[\sin ^{-1}\left(\frac{\cosh \mu \cos \theta-1}{\cosh \mu-\cos \theta}\right)+\sin ^{-1}\left(\frac{\cosh \mu \cos \theta+1}{\cosh \mu+\cos \theta}\right)+2 g(\theta)\right]$
where $g(\theta)$ is an arbitrary function of $\theta$. Substituting (9) into (7) we obtain
$\boldsymbol{A}^{\prime}=\frac{\phi}{\pi} \frac{g^{\prime}(\theta)}{h} e_{\theta}=\frac{\Phi g^{\prime}(\theta)}{\pi a\left(\cosh ^{2} \mu-\cos ^{2} \theta\right)^{1 / 2}} e_{\theta} \quad g^{\prime}(\theta) \equiv \mathrm{d} g(\theta) / \mathrm{d} \theta$.
Equation (10) must satisfy the physical requirement that

$$
\begin{equation*}
\oint_{C_{1}} \boldsymbol{A}^{\prime} \cdot \mathrm{d} \boldsymbol{r}=\Phi \quad \oint_{C_{2}} \boldsymbol{A}^{\prime} \cdot \mathrm{d} \boldsymbol{r}=\Phi \tag{11}
\end{equation*}
$$

where $C_{1}$ and $C_{2}$ are two closed paths around each flux. If we choose $C_{1}$ and $C_{2}$ as shown in figure 1 then (11) becomes

$$
\begin{equation*}
\frac{\Phi}{\pi} \int_{-\pi / 2}^{\pi / 2} g^{\prime}(\theta) \mathrm{d} \theta=\Phi \quad \frac{\phi}{\pi} \int_{\pi / 2}^{3 \pi / 2} g^{\prime}(\theta) \mathrm{d} \theta=\Phi \tag{12}
\end{equation*}
$$

since

$$
\begin{equation*}
\mathrm{d} \boldsymbol{r}=h \mathrm{~d} \mu \boldsymbol{e}_{\mu}+h \mathrm{~d} \theta \boldsymbol{e}_{\theta} \tag{13}
\end{equation*}
$$



Figure 1. Two closed paths around each flux.
and $\mathrm{d} \theta=0$ along the $y$ axis. The simplest choice of $g^{\prime}(\theta)$ is

$$
\begin{equation*}
g^{\prime}(\theta)=1 \tag{14}
\end{equation*}
$$

Substituting (14) into (10) we obtain

$$
\begin{equation*}
A^{\prime}=\frac{\Phi}{\pi a\left(\cosh ^{2} \mu-\cos ^{2} \theta\right)^{1 / 2}} \boldsymbol{e}_{\theta} \tag{15}
\end{equation*}
$$

## 3. The Schrödinger equation

The Schrödinger equation is

$$
\begin{equation*}
\left(\nabla-\frac{\mathrm{i} e}{\hbar c} \boldsymbol{A}^{\prime}\right)^{2} \psi^{\prime}=-k^{2} \psi^{\prime} \tag{16}
\end{equation*}
$$

Substituting (15) into (16) we obtain

$$
\begin{equation*}
\frac{\partial^{2} \psi^{\prime}}{\partial \mu^{2}}+\frac{\partial^{2} \psi^{\prime}}{\partial \theta^{2}}+\mathrm{i} 4 \alpha \frac{\partial \psi^{\prime}}{\partial \theta}-\left[4 \alpha^{2}-k^{2} a^{2}\left(\cosh ^{2} \mu-\cos ^{2} \theta\right)\right] \psi^{\prime}=0 \tag{17}
\end{equation*}
$$

where $k \equiv\left(2 m E / \hbar^{2}\right)^{1 / 2}$ is the wavenumber and $\alpha \equiv-e \Phi / 2 \pi \hbar c$ is the quantum number of the flux. By writing $\psi^{\prime}=M(\mu) \Theta(\theta)$ we get
$\frac{M^{\prime \prime}+a^{2} k^{2}\left(\cosh ^{2} \mu\right) M}{M}=-\frac{\Theta^{\prime \prime}+i 4 \alpha \Theta^{\prime}-\left(4 \alpha^{2}+a^{2} k^{2} \cos ^{2} \theta\right) \Theta}{\Theta}=\lambda+2 q$
where $q \equiv a^{2} k^{2} / 4$ and $\lambda+2 q$ is the constant introduced in separating variables. Let

$$
\begin{equation*}
\nu=\mathrm{i} \mu \quad \Theta(\theta)=\mathrm{e}^{-\mathrm{i} 2 \alpha \theta} Q(\theta) \tag{19}
\end{equation*}
$$

then (18) becomes

$$
\begin{align*}
& \mathrm{d}^{2} M / \mathrm{d} \nu^{2}+(\lambda-2 q \cos 2 \nu) M=0 \\
& \mathrm{~d}^{2} Q / \mathrm{d} \theta^{2}+(\lambda-2 q \cos 2 \theta) Q=0 \tag{20}
\end{align*}
$$

which are recognised as the Mathieu equations. The wavefunction $\psi$ corresponding
to $\boldsymbol{A}$ is related by the wavefunction $\psi^{\prime}$ corresponding to $\boldsymbol{A}^{\prime}$ by

$$
\begin{align*}
& \psi=\psi^{\prime} \exp \left(-\mathrm{i} \frac{e}{\hbar c} \Lambda\right) \\
&= \psi^{\prime} \exp \left\{\mathrm { i } \alpha \left[\sin ^{-1}\left(\frac{\cosh \mu \cos \theta-1}{\cosh \mu-\cos \theta}\right)\right.\right. \\
&\left.\left.+\sin ^{-1}\left(\frac{\cosh \mu \cos \theta+1}{\cosh \mu+\cos \theta}\right)+2 \theta-\pi\right]\right\} \tag{21}
\end{align*}
$$

where $g(\theta)$ in (9) is chosen to be $(\theta-\pi / 2)$ and hence (14) is satisfied. Using the general solution of (20) (Mclachlan 1947) we can obtain the general solution of $\psi^{\prime}$ :

$$
\begin{align*}
\psi=\exp (-\mathrm{i} & \left.\frac{e}{\hbar c} \Lambda-\mathrm{i} 2 \alpha \theta\right) \sum_{n=0}^{\infty}\left\{\left[A_{n} C e_{2 n}(\mu, q)+\bar{A}_{n} F e y_{2 n}(\mu, q)\right] c e_{2 n}(\theta, q)\right. \\
+ & {\left[B_{n} C e_{2 n+1}(\mu, q)+\bar{B}_{n} F e y_{2 n+1}(\mu, q)\right] c e_{2 n+1}(\theta, q) } \\
+ & {\left[C_{n} S e_{2 n+1}(\mu, q)+\bar{C}_{n} G e y_{2 n+1}(\mu, q)\right] s e_{2 n+1}(\theta, q) } \\
+ & {\left.\left[D_{n} S e_{2 n+2}(\mu, q)+\bar{D}_{n} G e y_{2 n+2}(\mu, q)\right] s e_{2 n+2}(\theta, q)\right\} . } \tag{22}
\end{align*}
$$

Equation (22) can be rewritten as

$$
\begin{align*}
& \psi=\sum_{m=0}^{\infty} \sum_{l}\left[C_{m l}^{c} C e_{l}(\mu, q)+\bar{C}_{m l}^{c} F e y_{l}(\mu, q)+S_{m l}^{c} S e_{l}(\mu, q)+\bar{S}_{m l}^{c} G e y_{l}(\mu, q)\right] c e_{m}(\theta, q) \\
&+\sum_{m=1}^{\infty} \sum_{l}\left[C_{m l}^{s} C e_{l}(\mu, q)+\bar{C}_{m l}^{s} F e y_{l}(\mu, q)+S_{m l}^{s} S e_{l}(\mu, q)\right. \\
&\left.+\bar{S}_{m l}^{s} G e y_{l}(\mu, q)\right] s e_{m}(\theta, q) \tag{23}
\end{align*}
$$

It should be noted that coefficients $C_{m l}^{c}, \bar{C}_{m l}^{c}, S_{m 1}^{c}, \ldots$, are functions of $\alpha$.
Now we shall find these coefficients under the conditions $\mu \rightarrow \infty$ and $q \rightarrow 0$. When $\mu \rightarrow \infty$, we have

$$
\begin{align*}
& \Lambda=\frac{\Phi}{2 \pi}\left[\sin ^{-1}(\cos \theta)+\sin ^{-1}(\cos \theta)+2 \theta-\pi\right]=0 \\
& \psi=\psi^{\prime} \exp \left(-\mathrm{i} \frac{e}{\hbar c} \Lambda\right)=\psi^{\prime} \tag{24}
\end{align*}
$$

$\cosh \mu \rightarrow \frac{1}{2} \mathrm{e}^{\mu} \quad \frac{1}{2} a \mathrm{e}^{\mu} \rightarrow \rho \quad \theta \rightarrow \phi \quad$ hence $\boldsymbol{A}^{\prime} \rightarrow \Phi \boldsymbol{e}_{\phi} / \pi \rho$

$$
\begin{array}{ll}
C e_{l}(\mu, q) \rightarrow p_{l}^{\prime} J_{l}(k \rho) & l \geqslant 0 \\
S e_{l}(\mu, q) \rightarrow s_{l}^{\prime} J_{l}(k \rho) & l \geqslant 1 \\
F e y_{l}(\mu, q) \rightarrow p_{l}^{\prime} Y_{l}(k \rho) & l \geqslant 0  \tag{26}\\
G e y_{l}(\mu, q) \rightarrow s_{l}^{\prime} Y_{l}(k \rho) & l \geqslant 1
\end{array}
$$

where $(\rho, \phi)$ are polar coordinates with the origin 0 of the rectangular coordinates as pole, the constant multipliers $p_{l}^{\prime}$ and $s_{l}^{\prime}$ are given by Mclachlan (1947, pp 368-9). When $q \rightarrow 0$,

$$
\begin{equation*}
c e_{m}(\theta, q) \rightarrow \cos (m \theta) \quad \operatorname{se}(\theta, q) \rightarrow \sin (m \theta) \tag{27}
\end{equation*}
$$

When $\mu \rightarrow \infty$ then $a \cosh \mu \sim a \sinh \mu \sim \frac{1}{2} a \mathrm{e}^{\mu} \sim \rho$ and we have $M(\mu)=R(\rho)$. Letting $\Theta=\mathrm{e}^{\mathrm{i} m \phi}$ we obtain

$$
\begin{equation*}
R^{\prime \prime}+\frac{1}{\rho} R^{\prime}+\left(k^{2}-\frac{(m+2 \alpha)^{2}}{\rho^{2}}\right) R=0 \tag{28}
\end{equation*}
$$

The solutions of (28) are Bessel functions of fractional order. Let $\tau$ be the angle between the $y$ axis and the wavevector $k$ of the incident wave, then we have (see Aharonov and Bohm (1959) who chose $\tau=-\pi / 2$ ):

$$
\begin{equation*}
\psi=\sum_{m=0}^{\infty} \mathrm{e}^{-\mathrm{i} \alpha \pi+\mathrm{i} m \tau} J_{m+2 \alpha} \mathrm{e}^{\mathrm{i} m \phi}+\sum_{m=1}^{\infty}(-1) \mathrm{e}^{\mathrm{i} \alpha \pi-\mathrm{i} m \tau} J_{m-2 \alpha} \mathrm{e}^{-\mathrm{i} m \phi} . \tag{29}
\end{equation*}
$$

By means of the asymptotic relations of Bessel functions we can write

$$
\begin{equation*}
J_{m \pm 2 \alpha}(k \rho)=\frac{1}{2} \mathrm{e}^{\mathrm{F} \mathrm{i} \alpha \pi}\left[J_{m}(k \rho)+\mathrm{i} Y_{m}(k \rho)\right]+\frac{1}{2} \mathrm{e}^{ \pm \mathrm{i} \alpha \pi}\left[J_{m}(k \rho)-\mathrm{i} Y_{m}(k \rho)\right] . \tag{30}
\end{equation*}
$$

Substituting (30) into (29) we obtain

$$
\begin{align*}
\psi=\left(\mathrm{e}^{-\mathrm{i} 2 \alpha \pi}+\right. & 1) \\
& J_{0}(k \rho)+\mathrm{i}\left(\mathrm{e}^{-\mathrm{i} 2 \alpha \pi}-1\right) Y_{0}(k \rho) \\
& +\sum_{n=1}^{\infty}\left\{4 \cos (2 n \tau-\alpha \pi) \cos (\alpha \pi) J_{2 n}(k \rho)\right. \\
& \left.+\mathrm{i} 4 \sin (2 n \tau-\alpha \pi) \sin (\alpha \pi) Y_{2 n}(k \rho)\right\} \cos (2 n \phi) \\
& +\sum_{n=0}^{\infty}\left\{\mathrm{i} 4 \sin [(2 n+1) \tau-\alpha \pi] \cos (\alpha \pi) J_{2 n+1}(k \rho)\right. \\
& \left.+4 \cos [(2 n+1) \tau-\alpha \pi] \sin (\alpha \pi) Y_{2 n+1}(k \rho)\right\} \cos [(2 n+1) \phi] \\
& +\sum_{n=0}^{\infty}\left\{\mathrm{i} 4 \cos [(2 n+1) \tau-\alpha \pi] \cos (\alpha \pi) J_{2 n+1}(k \rho)\right. \\
& \left.-4 \sin [(2 n+1) \tau-\alpha \pi] \sin (\alpha \pi) Y_{2 n+1}(k \rho)\right\} \sin [(2 n+1) \phi] \\
& +\sum_{n=0}^{\infty}\left\{-4 \sin [(2 n+2) \tau-\alpha \pi] \cos (\alpha \pi) J_{2 n+2}(k \rho)\right.  \tag{31}\\
& \left.+\mathrm{i} 4 \cos [(2 n+2) \tau-\alpha \pi] \sin (\alpha \pi) Y_{2 n+2}(k \rho)\right\} \sin [(2 n+2) \phi] .
\end{align*}
$$

In the limit $\mu \rightarrow \infty$ and $q \rightarrow 0$, by using (26), (27) and $\theta \rightarrow \phi$, we obtain from (23) the following formula for $\psi$ :

$$
\begin{align*}
\psi=\left[\left(\mathrm{e}^{-\mathrm{i} 2 \alpha \pi}+\right.\right. & \left.1) C e_{0}(\mu, q) / 2 p_{0}^{\prime}+\mathrm{i}\left(\mathrm{e}^{-\mathrm{i} 2 \alpha \pi}-1\right) F e y_{0}(\mu, q) / 2 p_{0}^{\prime}\right] c e_{0}(\theta, q) \\
& +\sum_{n=1}^{\infty}\left\{2 \cos (2 n \tau-\alpha \pi) \cos (\alpha \pi) C e_{2 n}(\mu, q) / p_{2 n}^{\prime}\right. \\
& \left.+2 \mathrm{i} \sin (2 n \tau-\alpha \pi) \sin (\alpha \pi) F e y_{2 n}(\mu, q) / p_{2 n}^{\prime}\right\} c e_{2 n}(\theta, q) \\
& +\sum_{n=0}^{\infty}\left\{2 \mathrm{i} \sin [(2 n+1) \tau-\alpha \pi] \cos (\alpha \pi) C e_{2 n+1}(\mu, q) / p_{2 n+1}^{\prime}\right. \\
& \left.+2 \cos [(2 n+1) \tau-\alpha \pi] \sin (\alpha \pi) F e y_{2 n+1}(\mu, q) / p_{2 n+1}^{\prime}\right\} c e_{2 n+1}(\theta, q) \\
& +\sum_{n=0}^{\infty}\left\{2 \mathrm{i} \cos [(2 n+1) \tau-\alpha \pi] \cos (\alpha \pi) \operatorname{Se}_{2 n+1}(\mu, q) / s_{2 n+1}^{\prime}\right. \\
& \left.-2 \sin [(2 n+1) \tau-\alpha \pi] \sin (\alpha \pi) G e y_{2 n+1}(\mu, q) / s_{2 n+1}^{\prime}\right\} s e_{2 n+1}(\theta, q) \\
& +\sum_{n=0}^{\infty}\left\{-2 \sin [(2 n+2) \tau-\alpha \pi] \cos (\alpha \pi) S e_{2 n+2}(\mu, q) / s_{2 n+2}^{\prime}\right. \\
& \left.+2 \mathrm{i} \cos [(2 n+2) \tau-\alpha \pi] \sin (\alpha \pi) G e y_{2 n+2}(\mu, q) / s_{2 n+2}^{\prime}\right\} s e_{2 n+2}(\theta, q) \tag{32}
\end{align*}
$$

## 4. Scattering cross section

Since in the asymptotic region $\phi=\theta$, (29) can be rewritten as

$$
\begin{equation*}
\psi=\exp [-2 \mathrm{i} \alpha \theta+\mathrm{i} k \rho \sin (\theta+\tau)]+f(\theta) \mathrm{e}^{\mathrm{i} k \rho} / \sqrt{k \rho} \tag{33}
\end{equation*}
$$

By the orthogonality of Mathieu functions we obtain

$$
\begin{gather*}
\frac{1}{\pi} \int_{-\pi}^{\pi} \exp [-2 \mathrm{i} \alpha \theta+\mathrm{i} k \rho \sin (\theta+\tau)] y_{j}(\theta, q) \mathrm{d} \theta+\frac{\mathrm{e}^{\mathrm{i} k \rho}}{\sqrt{k \rho}} \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) y_{j}(\theta, q) \mathrm{d} \theta \\
=\frac{1}{\pi} \int_{-\pi}^{\pi} \psi y_{j}(\theta, q) \mathrm{d} \theta \quad j=0,1,2,3,4 \tag{34}
\end{gather*}
$$

where $\quad y_{0}(\theta, q)=c e_{0}(\theta, q), \quad y_{1}(\theta, q)=c e_{2 n}(\theta, q), \quad y_{2}(\theta, q)=c e_{2 n+1}(\theta, q), \quad y_{3}(\theta, q)=$ $s e_{2 n+1}(\theta, q), y_{4}(\theta, q)=s e_{2 n+2}(\theta, q)$. The terms in (34) can be rewritten as
$\frac{1}{\pi} \int_{-\pi}^{\pi} \exp [-2 \mathrm{i} \alpha \theta+\mathrm{i} k \rho \sin (\theta+\tau)] y_{j}(\theta, q) \mathrm{d} \theta$

$$
\begin{align*}
= & G_{j}=G_{j}^{+} \mathrm{e}^{\mathrm{i} k \rho} / \sqrt{k \rho}+G_{j}^{-} \mathrm{e}^{-\mathrm{i} k \rho} / \sqrt{k \rho}  \tag{35}\\
& \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) y_{j}(\theta, q) \mathrm{d} \theta=F_{j}  \tag{36}\\
& \frac{1}{\pi} \int_{-\pi}^{\pi} \psi y_{j}(\theta, q) \mathrm{d} \theta=H_{j}=H_{j}^{+} \mathrm{e}^{i k \rho} / \sqrt{k \rho}+H_{j}^{-} \mathrm{e}^{-\mathrm{i} k \rho} / \sqrt{k \rho} . \tag{37}
\end{align*}
$$

Substituting (35)-(37) into (34), then comparing the coefficients of $\mathrm{e}^{i k \rho} \sqrt{k \rho}$, we can find $F_{j}(\alpha, \tau)$ :

$$
\begin{equation*}
F_{j}=H_{j}^{+}-G_{j}^{+} \tag{38}
\end{equation*}
$$

Since $y_{j}(\theta, q)$ form a complete set, we can express $f(\theta)$ as

$$
\begin{array}{r}
f(\theta)=\frac{1}{2} F_{0} c e_{0}(\theta, q)+\sum_{n=1}^{\infty} F_{1} c e_{2 n}(\theta, q)+\sum_{n=0}^{\infty} F_{2} c e_{2 n+1}(\theta, q) \\
+\sum_{n=0}^{\infty} F_{3} s e_{2 n+1}(\theta, q)+\sum_{n=0}^{\infty} F_{4} s e_{2 n+2}(\theta, q) \tag{39}
\end{array}
$$

where we have used the normalisation conditions of Mathieu functions. It should be pointed out, when we substitute (35)-(37) into (34), that the coefficient of $\mathrm{e}^{-\mathrm{i} k \rho} / \sqrt{k \rho}$ is

$$
\begin{equation*}
\frac{1}{2}\left(H_{0}^{-}-G_{0}^{-}\right)+\sum_{n=1}^{\infty}\left(H_{1}^{-}-G_{1}^{-}\right) c e_{2 n}(\theta, q)+\sum_{j=2}^{4} \sum_{n=0}^{\infty}\left(H_{j}^{-}-G_{j}^{-}\right) y_{j} \tag{40}
\end{equation*}
$$

which can be proved to be equal to zero (see appendix 1). Now let us calculate the terms $G_{j}$ in (35) and the terms $H_{j}$ in (37).

### 4.1. Calculation of $G_{j}$

Using formulae

$$
\begin{equation*}
\mathrm{e}^{i k \rho \sin (\theta+\tau)}=\sum_{m=-\infty}^{\infty} J_{m}(k \rho) \mathrm{e}^{\mathrm{i} m(\theta+\tau)} \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{1}=c e_{2 n}(\theta, q)=\sum_{r=0}^{\infty} A_{2 r}^{2 n} \cos (2 r \theta) \tag{42}
\end{equation*}
$$

we get

$$
\begin{equation*}
G_{1}=\sum_{m=-\infty}^{\infty} \mathrm{e}^{\mathrm{i} m \tau} J_{m}(k \rho) \sum_{r=0}^{\infty} A_{2 r}^{2 n} \frac{1}{\pi} \int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{i}(m-2 \alpha) \theta} \cos (2 r \theta) \mathrm{d} \theta . \tag{43}
\end{equation*}
$$

Using the asymptotic approximation

$$
\begin{equation*}
J_{m}(k \rho) \sim\left(\mathrm{e}^{\mathrm{i}(k \rho-m \pi / 2-\pi / 4)}+\mathrm{e}^{-\mathrm{i}(k \rho-m \pi / 2-\pi / 4)}\right) / \sqrt{2 \pi k \rho} \tag{44}
\end{equation*}
$$

and the formula
$\frac{1}{\pi} \int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{i}(m-2 \alpha) \theta} \cos (2 r \theta) \mathrm{d} \theta=\frac{\sin (2 \alpha \pi)}{\pi}(-1)^{m+1}\left(\frac{1}{m-2 \alpha+2 r}+\frac{1}{m-2 \alpha-2 r}\right)$
(43) can be written as

$$
\begin{equation*}
G_{1}=\frac{\sin (2 \alpha \pi)}{\pi \sqrt{2 \pi k \rho}}\left(\mathrm{e}^{\mathrm{i}(k \rho-\pi / 4)} \sum_{r=0}^{\infty} A_{2 r}^{2 n} g_{-}(\tau, r)+\mathrm{e}^{-\mathrm{i}(k \rho-\pi / 4)} \sum_{r=0}^{\infty} A_{2 r}^{2 n} g_{+}(\tau, r)\right) \tag{46}
\end{equation*}
$$

where

$$
\begin{align*}
g_{ \pm}(\tau, r) & \equiv \sum_{m=-\infty}^{\infty} \mathrm{e}^{\mathrm{i} m(\tau \pm \pi / 2)}(-1)^{m+1}\left(\frac{1}{m-2 \alpha+2 r}+\frac{1}{m-2 \alpha-2 r}\right) \\
& =\frac{\pi \mathrm{e}^{\mathrm{i} 2 \alpha(\tau \pm \pi / 2)}}{\sin (2 \alpha \pi)}(-1)^{\prime} 2 \cos [l(\tau \pm \pi / 2)] . \tag{47}
\end{align*}
$$

Substituting (47) into (46) we get

$$
\begin{equation*}
G_{1}=\left(\frac{2}{\pi}\right)^{1 / 2} c e_{2 n}(\tau+\pi / 2, q) \mathrm{e}^{\mathrm{i} 2 \alpha \tau}\left(\mathrm{e}^{-\mathrm{i} \alpha \pi-\mathrm{i} \pi / 4} \frac{\mathrm{e}^{\mathrm{i} k \rho}}{\sqrt{k \rho}}+\mathrm{e}^{\mathrm{i} \alpha \pi+\mathrm{i} \pi / 4} \frac{\mathrm{e}^{-\mathrm{i} k \rho}}{\sqrt{k \rho}}\right) \tag{48}
\end{equation*}
$$

Putting $n=0$ in (48) we obtain $G_{0}$. Similarly we can obtain

$$
\begin{align*}
& G_{2}=\left(\frac{2}{\pi}\right)^{1 / 2} c e_{2 n+1}(\tau+\pi / 2, q) \mathrm{e}^{\mathrm{i} 2 \alpha \tau}\left(-\mathrm{e}^{-\mathrm{i} \alpha \pi-\mathrm{i} \pi / 4} \frac{\mathrm{e}^{\mathrm{i} k \rho}}{\sqrt{k \rho}}+\mathrm{e}^{\mathrm{i} \alpha \pi+\mathrm{i} \pi / 4} \frac{\mathrm{e}^{-\mathrm{i} k \rho}}{\sqrt{k \rho}}\right)  \tag{49}\\
& G_{3}=\left(\frac{2}{\pi}\right)^{1 / 2} s e_{2 n+1}(\tau+\pi / 2, q) \mathrm{e}^{\mathrm{i} 2 \alpha \tau}\left(-\mathrm{e}^{-\mathrm{i} \alpha \pi-\mathrm{i} \pi / 4} \frac{\mathrm{e}^{\mathrm{i} k \rho}}{\sqrt{k \rho}}+\mathrm{e}^{\mathrm{i} \alpha \pi+\mathrm{i} \pi / 4} \frac{\mathrm{e}^{-\mathrm{i} k \rho}}{\sqrt{k \rho}}\right)  \tag{50}\\
& G_{4}=\left(\frac{2}{\pi}\right)^{1 / 2} s e_{2 n+2}(\tau+\pi / 2, q) \mathrm{e}^{\mathrm{i} 2 \alpha \tau}\left(\mathrm{e}^{-\mathrm{i} \alpha \pi-\mathrm{i} \pi / 4} \frac{\mathrm{e}^{\mathrm{i} k \rho}}{\sqrt{k \rho}}+\mathrm{e}^{\mathrm{i} \alpha \pi+\mathrm{i} \pi / 4} \frac{\mathrm{e}^{-\mathrm{i} k \rho}}{\sqrt{k \rho}}\right) . \tag{51}
\end{align*}
$$

### 4.2. Calculation of $H_{j}$

Using (26), (32), (44) and the asymptotic approximation of $Y_{m}(k \rho)$ :

$$
\begin{equation*}
Y_{m}(k \rho) \sim\left(\mathrm{e}^{\mathrm{i}(k \rho-m \pi / 2-\pi / 4)}-\mathrm{e}^{-\mathrm{i}(k \rho-m \pi / 2-\pi / 4)}\right) / \sqrt{2 \pi k \rho} \tag{52}
\end{equation*}
$$

we obtain

$$
\begin{gather*}
H_{0}=\frac{1}{\sqrt{2 \pi}}\left(2 \mathrm{e}^{-\mathrm{i} 2 \alpha \pi-\mathrm{i} \pi / 4} \frac{\mathrm{e}^{\mathrm{i} k \rho}}{\sqrt{k \rho}}+\mathrm{e}^{\mathrm{i} \pi / 4} \frac{\mathrm{e}^{-\mathrm{i} k \rho}}{\sqrt{k \rho}}\right) \\
=H_{0}^{+} \frac{\mathrm{e}^{\mathrm{i} k \rho}}{\sqrt{k \rho}}+H_{0}^{-} \frac{\mathrm{e}^{-\mathrm{i} k \rho}}{\sqrt{k \rho}} \tag{53}
\end{gather*}
$$

$$
\begin{align*}
& \begin{aligned}
& H_{1}=\frac{(-1)^{n}}{\sqrt{2 \pi}}\left(2 \cos (2 n \tau-2 \alpha \pi) \mathrm{e}^{-\mathrm{i} \pi / 4} \frac{\mathrm{e}^{\mathrm{i} k \rho}}{\sqrt{k \rho}}+\mathrm{i} \mathrm{e}^{\mathrm{i} \pi / 4} 2 \cos (2 n \tau) \frac{\mathrm{e}^{-\mathrm{i} k \rho}}{\sqrt{k \rho}}\right) \\
&=H_{1}^{+} \frac{\mathrm{e}^{\mathrm{i} k \rho}}{\sqrt{k \rho}}+H_{1}^{-} \frac{\mathrm{e}^{-\mathrm{i} k \rho}}{\sqrt{k \rho}} \\
& \begin{aligned}
H_{2}=\frac{(-1)^{n}}{\sqrt{2 \pi}} & \left(2 \mathrm{i} \sin [(2 n+1) \tau-2 \alpha \pi] \mathrm{e}^{-\mathrm{i} \pi / 4} \frac{\mathrm{e}^{\mathrm{i} k \rho}}{\sqrt{k \rho}}-2 \mathrm{e}^{\mathrm{i} \pi / 4} \sin [(2 n+1) \tau] \frac{\mathrm{e}^{-\mathrm{i} k \rho}}{\sqrt{k \rho}}\right) \\
= & H_{2}^{+} \frac{\mathrm{e}^{\mathrm{i} k \rho}}{\sqrt{k \rho}}+H_{2}^{-} \frac{\mathrm{e}^{-\mathrm{i} k \rho}}{\sqrt{k \rho}}
\end{aligned} \\
& \begin{aligned}
& H_{3}=\frac{(-1)^{n}}{\sqrt{2 \pi}}\left(2 \mathrm{i} \cos [(2 n+1) \tau-2 \alpha \pi] \mathrm{e}^{-\mathrm{i} \pi / 4} \frac{\mathrm{e}^{\mathrm{i} k \rho}}{\sqrt{k \rho}}-2 \mathrm{e}^{\mathrm{i} \pi / 4} \cos [(2 n+1) \tau] \frac{\mathrm{e}^{-\mathrm{i} k \rho}}{\sqrt{k \rho}}\right) \\
&= H_{3}^{+} \frac{\mathrm{e}^{\mathrm{i} k \rho}}{\sqrt{k \rho}}+H_{3}^{-} \frac{\mathrm{e}^{-\mathrm{i} k \rho}}{\sqrt{k \rho}}
\end{aligned} \\
& H_{4}=\frac{(-1)^{n+1}}{\sqrt{2 \pi}}\left(-2 \sin [(2 n+2) \tau-2 \alpha \pi] \mathrm{e}^{-\mathrm{i} \pi / 4} \frac{\mathrm{e}^{\mathrm{i} k \rho}}{\sqrt{k \rho}}-2 \mathrm{i} \mathrm{e}^{\mathrm{i} \pi / 4} \sin [(2 n+2) \tau] \frac{\mathrm{e}^{-\mathrm{i} k \rho}}{\sqrt{k \rho}}\right) \\
&= H_{4}^{+} \frac{\mathrm{e}^{\mathrm{i} k \rho}}{\sqrt{k \rho}}+H_{4}^{-} \frac{\mathrm{e}^{-\mathrm{i} k \rho}}{\sqrt{k \rho}} .
\end{aligned}
\end{align*}
$$

Using the above results we can obtain $F_{j}$ from (38), and hence obtain $f(\theta)$ from (39). In appendix 1 we prove that the summation of all the terms involving $G_{0}^{+}, G_{1}^{+}, G_{2}^{+}, G_{3}^{+}, G_{4}^{+}$equals zero and hence we obtain

$$
\begin{align*}
f(\theta)=\frac{1}{2} H_{0}^{+} c e_{0} & (\theta, q)+\sum_{n=1}^{\infty} H_{1}^{+} c e_{2 n}(\theta, q)+\sum_{n=0}^{\infty} H_{2}^{+} c e_{2 n+1}(\theta, q) \\
& +\sum_{n=0}^{\infty} H_{3}^{+} s e_{2 n+1}(\theta, q)+\sum_{n=0}^{\infty} H_{4}^{+} s e_{2 n+2}(\theta, q) \tag{58}
\end{align*}
$$

### 4.3. The case when $q$ is small

In this case we can expand $y_{j}(\theta, q)$ as a power series of $q$, and so we can do the same thing for $f(\theta)$. From (58) we find the term not containing $q$ is

$$
\begin{equation*}
f_{0}(\theta)=\frac{\mathrm{e}^{-\mathrm{i} 3 \pi / 4}}{\sqrt{2 \pi}} \sin (2 \alpha \pi) \exp \left[-\mathrm{i}\left(\frac{\theta+\tau}{2}+\frac{\pi}{4}\right)\right]\left[\cos \left(\frac{\theta+\tau}{2}+\frac{\pi}{4}\right)\right]^{-1} \tag{59}
\end{equation*}
$$

and the term containing the first power of $q$ is

$$
\begin{align*}
f_{1}(\theta)=\frac{q \mathrm{e}^{-\mathrm{i} \pi / 4}}{2 \sqrt{2 \pi}} & \left\{\cos (2 \theta-2 \alpha \pi)-\mathrm{e}^{-\mathrm{i} 2 \alpha \pi} \cos \theta\right. \\
& -\cos (\tau-\theta)[(\pi / 2+\tau+\theta) \cos (2 \alpha \pi)-\sin (2 \alpha \pi) \\
& \left.\left.\times\left(\cosh ^{-1}|\sec (\tau+\theta)|+\ln |2 \cos (\tau+\theta)|\right)\right]\right\} \tag{60}
\end{align*}
$$

The detailed derivation of (59) and (60) is given in appendix 2 . In short

$$
\begin{equation*}
f(\theta)=f_{0}(\theta)+f_{1}(\theta)+\mathrm{O}\left(q^{2}\right) \tag{61}
\end{equation*}
$$

When $q=0$ and $\tau=-\pi / 2$,

$$
\begin{equation*}
f_{0}(\theta)=\frac{\mathrm{e}^{-\mathrm{i} 3 \pi / 4}}{\sqrt{2 \pi}} \sin (2 \alpha \pi) \frac{\mathrm{e}^{-\mathrm{i} \theta / 2}}{\cos (\theta / 2)} \tag{62}
\end{equation*}
$$

we obtain the result of Aharonov and Bohm (1959) as expected, the only difference being the replacement of $\alpha$ by $2 \alpha$.

Neglecting $\mathrm{O}\left(q^{2}\right)$ we obtain the scattering cross section

$$
\begin{align*}
\sigma=|f(\theta)|^{2}= & (\operatorname{Re} f(\theta))^{2}+(\operatorname{Im} f(\theta))^{2} \\
= & \frac{\sin ^{2}(2 \alpha \pi)}{2 \pi} \cos ^{-2}\left(\frac{\theta+\tau}{2}+\frac{\pi}{4}\right) \\
& -q \frac{\sin (2 \alpha \pi)}{2 \pi}\{\cos \theta \sin (2 \alpha \pi) \\
& +\tan \left(\frac{\theta+\tau}{2}+\frac{\pi}{4}\right)[\cos (2 \theta-2 \alpha \pi)-\cos (2 \alpha \pi) \cos \theta] \\
& -\cos (\tau-\theta)\left[\left(\frac{\pi}{2}+\tau+\theta\right) \cos (2 \alpha \pi)\right. \\
& \left.\left.-\sin (2 \alpha \pi)\left(\cosh ^{-1}|\sec (\tau+\theta)|+\ln |2 \cos (\tau+\theta)|\right)\right]\right\} . \tag{63}
\end{align*}
$$

When $\tau=-\pi / 2$ and $2 \alpha=n+\frac{1}{2}$, (63) reduces to

$$
\begin{align*}
\sigma=|f(\theta)|^{2}= & \frac{1}{2 \pi \cos ^{2}(\theta / 2)}-\frac{q}{2 \pi}\left[2 \cos \theta-\cos ^{2} \theta-2 \sin ^{2}(\theta / 2)\right. \\
& \left.\times\left(\cosh ^{-1}|\operatorname{cosec} \theta|+\ln |2 \sin \theta|\right)\right] . \tag{64}
\end{align*}
$$

In this case, the dependence of $\sigma$ on $\theta$ for $q=0$ and $q=0.1$ are shown in figure 2 .


Figure 2. Dependence of $\sigma$ on $\theta$.

### 4.4. The case when $q \gg 1$

When $q \rightarrow \infty$ we know (Mclachlan 1947) that

$$
\begin{align*}
& A_{2 r}^{2 n} / A_{0}^{2 n} \rightarrow(-1)^{r} 2 \quad A_{2 r+1}^{2 n+1} / A_{1}^{2 n+1} \rightarrow(-1)^{r}(2 r+1) \\
& B_{2 r+1}^{2 n+1} / B_{1}^{2 n+1} \rightarrow(-1)^{r} \quad B_{2 r+2}^{2 n+2} / B_{2}^{2 n+2} \rightarrow(-1)^{r}(r+1)  \tag{65}\\
& A_{0}^{2 n} \rightarrow 0 \quad A_{1}^{2 n+1} \rightarrow 0 \quad B_{1}^{2 n+1} \rightarrow 0 \quad B_{2}^{2 n+2} \rightarrow 0 .
\end{align*}
$$

Hence in this case from (58) we obtain the result

$$
\begin{equation*}
f(\theta) \rightarrow 0 \tag{66}
\end{equation*}
$$

which is obvious from the physical point of view.
When $q$ is large but not yet infinite, we can use the asymptotic formulae for $c e_{m}$ and $s e_{m}$ when $q>0$ is large enough. For simplicity, we only write out the result when $\tau=-\pi / 2$ and $\theta \approx 0$ :
$\sigma=|f|^{2}=\frac{2 \cos ^{2}(2 \alpha \pi)}{\pi^{2} q^{1 / 2}}\left[\left(\frac{1}{2} p_{0}^{\prime}+\sum_{n=1}^{\infty} p_{2 n}^{\prime}\right)^{2}+\left(\frac{1}{2} \tan (2 \alpha \pi) p_{0}^{\prime}+\sum_{n=0}^{\infty} p_{2 n+1}^{\prime}\right)^{2}\right]$
where

$$
\begin{align*}
& p_{2 n}^{\prime}=(-1)^{n} c e_{2 n}(0, q) c e_{2 n}(\pi / 2, q) / A_{0}^{(2 n)} \\
& p_{2 n+1}^{\prime}=(-1)^{n+1} c e_{2 n+1}(0, q) c e_{2 n+1}^{\prime}(\pi / 2, q) / q^{1 / 2} A_{1}^{(2 n+1)} \tag{68}
\end{align*}
$$

## Acknowledgments

We would like to thank Professor D H Kobe for helpful discussions and for his encouragement. We would also like to thank a referee for suggesting improvements to this paper.

## Appendix 1

Here we give the proof of the following equations:

$$
\begin{align*}
\frac{1}{2} G_{0}^{+} c e_{0}(\theta, q) & +\sum_{n=1}^{\infty} G_{1}^{+} c e_{2 n}(\theta, q)+\sum_{n=0}^{\infty} G_{2}^{+} c e_{2 n+1}(\theta, q)+\sum_{n=0}^{\infty} G_{3}^{+} s e_{2 n+1}(\theta, q) \\
& +\sum_{n=0}^{\infty} G_{4}^{+} s e_{2 n+2}(\theta, q)=0  \tag{A1.1}\\
\frac{1}{2} G_{0}^{-} c e_{0}(\theta, q) & +\sum_{n=1}^{\infty} G_{1}^{-} c e_{2 n}(\theta, q)+\sum_{n=0}^{\infty} G_{2}^{-} c e_{2 n+1}(\theta, q)+\sum_{n=0}^{\infty} G_{3}^{-} s e_{2 n+1}(\theta, q) \\
& +\sum_{n=0}^{\infty} G_{4}^{-} s e_{2 n+2}(\theta, q)=0  \tag{A1.2}\\
\frac{1}{2} H_{0}^{-} c e_{0}(\theta, q) & +\sum_{n=1}^{\infty} H_{1}^{-} c e_{2 n}(\theta, q)+\sum_{n=0}^{\infty} H_{2}^{-} c e_{2 n+1}(\theta, q)+\sum_{n=0}^{\infty} H_{3}^{-} s e_{2 n+1}(\theta, q) \\
& +\sum_{n=0}^{\infty} H_{4}^{-} s e_{2 n+2}(\theta, q)=0 . \tag{A1.3}
\end{align*}
$$

Let us consider the case when $q$ is small, then $c e_{0}(z, q)=1$. Firstly let us calculate

$$
\begin{equation*}
\Sigma_{0,1} \equiv \frac{1}{2}+\sum_{n=1}^{\infty} c e_{2 n}(\tau+\pi / 2, q) c e_{2 n}(\theta, q) . \tag{A1.4}
\end{equation*}
$$

Using the formulae

$$
\begin{equation*}
c e_{2 n}(\theta, q)=\sum_{r=0}^{\infty} A_{2 r}^{2 n} \cos (2 r \theta) \quad \cos (2 r \theta)=\sum_{n=0}^{\infty} A_{2 r}^{2 n} c e_{2 n}(\theta, q) \tag{A1.5}
\end{equation*}
$$

we obtain

$$
\begin{align*}
\Sigma_{0,1} & =\sum_{n=0}^{\infty} c e_{2 n}(\tau+\pi / 2, q) \sum_{r=0}^{\infty} A_{2 r}^{2 n} \cos (2 r \theta)-\frac{1}{2} \\
& =\sum_{r=0}^{\infty} \sum_{n=0}^{\infty} A_{2 r}^{2 n} c e_{2 n}(\tau+\pi / 2, q) \cos (2 r \theta)-\frac{1}{2} \\
& =\sum_{r=0}^{\infty} \cos [2 r(\tau+\pi / 2)] \cos (2 r \theta)-\frac{1}{2}=0 . \tag{A1.6}
\end{align*}
$$

Similarly we get

$$
\begin{align*}
& \Sigma_{2} \equiv \sum_{n=0}^{\infty} c e_{2 n+1}(\tau+\pi / 2, q) c e_{2 n+1}(\theta, q)=0 \\
& \Sigma_{3} \equiv \sum_{n=0}^{\infty} s e_{2 n+1}(\tau+\pi / 2, q) s e_{2 n+1}(\theta, q)=0  \tag{A1.7}\\
& \Sigma_{4} \equiv \sum_{n=0}^{\infty} s e_{2 n+2}(\tau+\pi / 2, q) s e_{2 n+2}(\theta, q)=0
\end{align*}
$$

Since the Lhs of (A1.1) is equal to

$$
\begin{equation*}
\left(\frac{2}{\pi}\right)^{1 / 2} \mathrm{e}^{\mathrm{i} 2 \alpha \tau} \mathrm{e}^{-\mathrm{i} \alpha \pi-\mathrm{i} \pi / 4}\left(\Sigma_{0,1}-\Sigma_{2}-\Sigma_{3}+\Sigma_{4}\right) \tag{A1.8}
\end{equation*}
$$

then we prove (A1.1) by (A1.6) and (A1.7). Similarly, since the Lhs of (A1.2) is equal to

$$
\begin{equation*}
\left(\frac{2}{\pi}\right)^{1 / 2} \mathrm{e}^{\mathrm{i} 2 \alpha \tau} \mathrm{e}^{\mathrm{i} \alpha \pi+\mathrm{i} \pi / 4}\left(\Sigma_{0,1}+\Sigma_{2}+\Sigma_{3}+\Sigma_{4}\right) \tag{A1.9}
\end{equation*}
$$

we prove (A1.2). By aid of (A1.5) and similar equations, the lhs of (A1.3) can be written as

$$
\begin{equation*}
\frac{\mathrm{e}^{i \pi / 4}}{\sqrt{2 \pi}}\left(\Sigma_{0,1}+\Sigma_{2}+\Sigma_{3}+\Sigma_{4}\right) \tag{A1.10}
\end{equation*}
$$

and we thus prove (A1.3). Using (A1.2) and (A1.3) we prove that the coefficient (40) is equal to zero. With the aid of (A1.1) we obtain (58).

## Appendix 2. Derivation of (59) and (60)

In (58) we use the following expansion formulae:
$c e_{2 n}(\theta, q)=\cos (2 n \theta)-q\left(\frac{\cos [2(n+1) \theta]}{4(2 n+1)}-\frac{\cos [2(n-1) \theta]}{4(2 n-1)}\right)+\mathrm{O}\left(q^{2}\right)$
$c e_{2 n+1}(\theta, q)=\cos [(2 n+1) \theta]-q\left(\frac{\cos [(2 n+3) \theta]}{4(2 n+2)}-\frac{\cos [(2 n-1) \theta]}{4 \times 2 n}\right)+\mathrm{O}\left(q^{2}\right)$
$\operatorname{se}_{2 n+1}(\theta, q)=\sin [(2 n+1) \theta]-q\left(\frac{\sin [(2 n+3) \theta]}{4(2 n+2)}-\frac{\sin [(2 n-1) \theta]}{4 \times 2 n}\right)+\mathrm{O}\left(q^{2}\right)$
$\operatorname{se} e_{2 n+2}(\theta, q)=\sin [(2 n+2) \theta]-q\left(\frac{\sin [(2 n+4) \theta]}{4(2 n+3)}-\frac{\sin (2 n \theta)}{4(2 n+1)}\right)+\mathrm{O}\left(q^{2}\right)$.
Then, collecting the terms not containing $q$, through quite a tedious calculation, we obtain (59):

$$
\begin{align*}
f_{0}(\theta)=\frac{\mathrm{e}^{-\mathrm{i} \pi / 4}}{\sqrt{2 \pi}} & \left(\mathrm{e}^{-\mathrm{i} 2 \alpha \pi}-\frac{\cos (\theta+\tau-2 \alpha \pi)}{\cos (\theta+\tau)}-\frac{\sin (2 \alpha \pi)}{\cos (\theta+\tau)}\right) \\
& =\frac{\mathrm{e}^{-\mathrm{i} \pi / 4}}{\sqrt{2 \pi}} \sin (2 \alpha \pi)\left(\frac{-\mathrm{i} \cos (\theta+\tau)-[1+\sin (\theta+\tau)]}{\cos (\theta+\tau)}\right) \\
& =\frac{-\mathrm{i} \mathrm{e}^{-\mathrm{i} \pi / 4}}{\sqrt{2 \pi}} \sin (2 \alpha \pi)\left(\frac{\sin (\theta+\tau+\pi / 2)-\mathrm{i}[1-\cos (\theta+\tau+\pi / 2)]}{\sin (\theta+\tau+\pi / 2)}\right) \\
& =\frac{\mathrm{e}^{-\mathrm{i} 3 \pi / 4}}{\sqrt{2 \pi}} \sin (2 \alpha \pi) \frac{\exp [-\mathrm{i}(\theta / 2+\tau / 2+\pi / 4)]}{\cos (\theta / 2+\tau / 2+\pi / 4)} . \tag{A2.5}
\end{align*}
$$

When we collect the terms containing the first power of $q$, the result is

$$
\begin{align*}
f_{1}(\theta)=\frac{q \mathrm{e}^{-\mathrm{i} \pi / 4}}{\sqrt{2 \pi}} & {\left[-\frac{1}{2} \mathrm{e}^{-\mathrm{i} 2 \alpha \pi} \cos \theta\right.} \\
& +\sum_{n=1}^{\infty}(-1)^{n+1} 2 \cos (2 n \tau-2 \alpha \pi)\left(\frac{\cos [2(n+1) \theta]}{4(2 n+1)}-\frac{\cos [2(n-1) \theta]}{4(2 n-1)}\right) \\
& -\frac{1}{4} \sin (\tau-2 \alpha \pi) \cos (3 \theta)+\sum_{n=1}^{\infty}(-1)^{n+1} 2 \sin [(2 n+1) \tau-2 \alpha \pi] \\
& \times\left(\frac{\cos [(2 n+3) \theta]}{4(2 n+2)}-\frac{\cos [(2 n-1) \theta]}{4 \times 2 n}\right)-\frac{1}{4} \cos (\tau-2 \alpha \pi) \sin (3 \theta) \\
& +\sum_{n=1}^{\infty}(-1)^{n+1} 2 \cos [(2 n+1) \tau-2 \alpha \pi]\left(\frac{\sin [(2 n+3) \theta]}{4(2 n+2)}-\frac{\sin [(2 n-1) \theta]}{4 \times 2 n}\right) \\
& +\sum_{n=0}^{\infty}(-1)^{n+1} 2 \sin [(2 n+2) \tau-2 \alpha \pi] \\
& \left.\times\left(\frac{\sin [(2 n+4) \theta]}{4(2 n+3)}-\frac{\sin (2 n \theta)}{4(2 n+1)}\right)\right] . \tag{A2.6}
\end{align*}
$$

Through a long and tedious calculation we find

$$
\begin{align*}
& f_{1}^{(2)}+f_{1}^{(7)}=\frac{1}{2} \cos (2 \theta-2 \alpha \pi)-\frac{1}{2} \cos (\tau-\theta) \\
& \quad \times\left[\frac{1}{2} \pi \cos (2 \alpha \pi)-\sin (2 \alpha \pi) \cosh ^{-1}|\sec (\tau+\theta)|\right]  \tag{A2.7}\\
& f_{1}^{(4)}+f_{1}^{(6)}=\frac{1}{4} \sin (\tau+3 \theta-2 \alpha \pi)-\frac{1}{2} \cos (\tau-\theta) \\
& \times[(\tau+\theta) \cos (2 \alpha \pi)-\sin (2 \alpha \pi) \ln |2 \cos (\tau+\theta)|]  \tag{A2.8}\\
& f_{1}^{(3)}+f_{1}^{(5)}=-\frac{1}{4} \sin (\tau+3 \theta-2 \alpha \pi) \tag{A2.9}
\end{align*}
$$

There are seven terms in the large square bracket of (A2.6), represented by $f_{1}^{(j)}$, where the superscript $j$ represent the ordinal number of the term. Substituting (A2.7)-(A2.9) into (A2.6) we obtain (60).

## References

Aharonov Y, Au C K, Lerner E C and Liang J Q 1984 Phys. Rev. D 292396
Aharonov Y and Bohm D 1959 Phys. Rev. 115485
Brown R A 1985 J. Phys. A: Math. Gen. 182497
Gauthier N and Rochon P 1985 J. Math. Phys. 262218
Mclachlan N W 1947 Theory and Applications of Mathieu Functions (Oxford: Oxford University Press)

