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Abstract. The problem of Aharonov-Bohm scattering on parallel flux lines of the same 
magnitude is solved exactly and the differential cross section is calculated. 

1. Introduction 

The quantum mechanical scattering of electrons by a flux line was analysed by Aharonov 
and Bohm (1959). Since then Aharonov-Bohm scattering problems have been solved 
exactly only for the case of a single flux tube (Aharonov er al 1984, Brown 1985, 
Gauthier and Rochon 1985). In this paper we shall further solve exactly the Aharonov- 
Bohm scattering on parallel flux lines of the same magnitude. In 0 2 we derive a 
simplified form of the vector potential in elliptical coordinates. In 0 3 we solve exactly 
the Schrodinger equation by means of Mathieu functions. In 0 4  we obtain the 
differential cross section. 

2. Vector potential 

Let OXY be the coordinate plane perpendicular to two flux lines having coordinates 
(a, 0) and (-a, 0). We choose two polar coordinates ( p l ,  C $ l )  and ( p 2 ,  C$J with these 
two points as poles. In the Coulomb gauge, the vector potential is 

where 0 is the flux of the flux lines and e,, and e,2 are the unit vectors in the transverse 
direction of the two polar coordinates. In terms of rectangular coordinates 

-y i  + ( x  - a ) j - yi + ( x + a ) j  
= [ ( - a )2  + $ 1  ’ / 2  %2 = [ (x + a ) 2 + y 2 ]  1 / 2 ’  
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2574 2-Y Gu and S- W Qian 

When we use elliptical coordinates, the transformation equations are 

x = a cosh p cos 8 y = a sinh p sin 8 

the metric coefficients are 
z 1/2 

h,,=[(E)’+(:) ] = a ( c o s h z ~ - c o s 2 8 ) ’ / z = h  

h,= [(~)z+($)z]”z = a(cosh2 p -cosz e) ’ / ’ =  h. 

The relations between the unit coordinate vectors e,,, e, and i, j are 

1 ax 1 ax U 

h a w  h a 6  ‘ - h  
i =- -e, +-- e -- (sinh p cos 8 e,, -cosh p sin 8 e,) 

( 5 )  
1 ay 1 ay a 
h a p  h d e  h 

j=--e , ,+--e ,=-(coshp sin 8e,+sinhp cos e e , ) .  

In terms of elliptical coordinates (1) becomes 

@(-sin 8 cos 8 eF + sinh p cosh p e,) A =  
.ira(cosh2 p -cosz 

Now we simplify the form of the vector potential by a gauge transformation. The 
new vector potential is 

T cosh2 -cosz e d e  
+ 2) e,, +; 1 (- @ s inhp  coshp  

c o s h z p - ~ ~ ~ z  e ap 

Letting the coefficient of e,, be equal to zero, we obtain 

aA @ sin Bcos 8 --- - 
d p  T cosh2 p -COS’ 8 ‘  

Integrating over p we obtain 

cosh p COS 6 + 1 
cosh p +cos 6 

) + sin-’ ( cosh p COS 0 - 1 A = -  sin-’ 
2 T  @ [  ( cosh p -cos 8 

where g(0)  is an arbitrary function of 8. Substituting (9) into (7) we obtain 

Equation (10) must satisfy the physical requirement that 

fc, A’.dr=Q, * d r  = @ 

where C, and C, are two closed paths around each flux. If we choose C, and C, as 
shown in figure 1 then (1  1) becomes 

since 

(13) d r  = h dp e,, + h d 8 e, 
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Figure 1. Two closed paths around each flux. 

and d0  = O  along the y axis. The simplest choice of g‘(0) is 

g’(O)=l. 

Substituting (14) into (10) we obtain 

(D A ’ =  
.rra(cosh2 p -COS’ 

3. The Schrodinger equation 

The Schrodinger equation is 

Substituting (15) into (16) we obtain 

?+ a’+’ -+ a2+‘ i4a - a*‘ - [4a2  - k’a2(cosh2 p -cos2 e)]+’ = 0 
ap ao2 ao 

where k =  (2mE/h2)”’ is the wavenumber and a = -e(D/Z.rrhc is the quantum number 
of the flux. By writing +’= M(p)O(O) we get 

M”+a2k2(cosh2 p ) M  O”+i4a0’- (4a2+a2k2cos2  0 ) 0  
= A + 2 q  (18) = -  

M 0 

where q a2k2/4 and A + 2q is the constant introduced in separating variables. Let 

v = i p  @(e) = e-i2”eQ(o) (19) 

then (18) becomes 

d2M/dv2+(A - 2 q c 0 ~ 2 v ) M = O  

d2Q/de2+(A -2q C O S ~ O ) Q = O  (20) 

which are recognised as the Mathieu equations. The wavefunction + corresponding 
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to A is related by the wavefunction 9’ corresponding to A’ by 

cosh COS e - 1 
cosh -COS e 

cosh /.L cos f l +  1) I) + 2 e - V  
+sin-1 ( cosh p + cos 8 

where g( e )  in (9) is chosen to be ( e  - 7r/2) qr?d hence (14) is satisfied. Using the 
general solution of (20) (Mclachlan 1947) we can obtain the general solution of 4‘: 

oc 

+ c c [ ~ s , r C e , ( t L ,  9 ) +  C ” , m J / ( P ,  4 ) +  Ss,ISe/(pL, 4 )  

+ p m / G e y / ( P ,  q)Isem(e,  4 ) .  (23) 

m = l  I 

It should be noted that coefficients Ckl, e;,, S‘,,, . . . , are functions of a. 

p +a, we have 
Now we shall find these coefficients under the conditions p +CO and q + 0. When 

aJ 
27T 

A =- [sin-‘(cos 0)  +sin-’(cos 0)  +28 - T ]  = 0 

= $ 1  exp( -i % A )  e = $ 1  

(24) 

c o s h p + i e r  $a e W + p  e + $  hence A’+ aJe,/Tp (25) 

CedCL, q)+PjJ/(kP) I s 0  

GeY/(P,  4 )  + si Y,(kP) 1 

where (p, 4) are polar coordinates with the origin 0 of the rectangular coordinates as 
pole, the constant multipliers pi  and si are given by Mclachlan (1947, pp 368-9). When 
4+0,  

cem( 8, q )  + cos( me)  se,,,(& q)+sin(mO). (27) 
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When p +CO then a cosh p - a sinh p - f a  er - p and we have M ( p )  = R ( p ) .  Letting 
0 = e"* we obtain 

The solutions of (28) are Bessel functions of fractional order. Let T be the angle 
between the y axis and the wavevector k of the incident wave, then we have (see 
Aharonov and Bohm (1959) who chose r = -7r/2): 

m = O  m = l  

By means of the asymptotic relations of Bessel functions we can write 

Substituting (30) into (29) we obtain 
+ = ( e - i 2 m  + l)Jo(kp) +i(e-'2"" - 1) Yo(kp) 

Jm i 2 a  ( kp ) = f e J, ( kp ) + i Ym ( kp )] + 4 e *ia"[ Jm ( kp ) - i Ym ( kp )] . (30) 

m 
+ (4 COS(2nT- "77) C0S(a7T)J2n(kp) 

n = 1  

+i4 sin(2n.r-cur) sin(a.rr) Y2,(kp)) cos(2nq5) 

+ {i4s in[ (2n+l )~-a . r r ]  co~(a.rr)J~, ,+~(kp)  

+ 4  cos[(2n + 1 ) ~ -  an] sin(a.rr) Y,,+,(kp)} cos[(2n + 1 ) 4 ]  

+ { i 4 c o s [ ( 2 n + l ) ~ - w r ]  cos(a.rr)J2,+,(kp) 

-4s in[ (2n+1)7-a7~]  sin(a.rr)Y,,+,(kp)} sin[(2n+1)4] 

+ 1 (-4 s i n [ ( 2 n + 2 ) ~ -  a771 c ~ s ( a . r r ) J ~ , + ~ ( k p )  

+i4 cos[(2n + 2 ) ~ -  a571 sin(a.rr) Y 2 n + 2 ( k p ) }  sin[(2n +2)4] .  

03 

n=O 

m 

n =o 

03 

n =o 

(31) 
In the limit p + 00 and q + 0, by using (26), (27) and 0 + 4, we obtain from (23) the 
following formula for $: 

+ 1)Ceo(p., q)/2pb+i(e-i2""- 1 ) W o ( p ,  4)/2pblceo(& 4 )  + = ~ ( ~ - i 2 0 7 7  
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4. Scattering cross section 

Since in the asymptotic region 4 = 8, (29) can be rewritten as 

4 = exp[ - 2iae + ikp sin( e + T)] +f( e) e i k p / f i .  

By the orthogonality of Mathieu functions we obtain 

exp[ -2iaB+ikp s in(O+~)]y~(6 ,  q )  de+- 

(33) 

f ( e )y j ( e ,q )de=F ,  (36) 

(37) 

Substituting (35)-(37) into (34), then comparing the coefficients of e i k p f i ,  we can 
find $(CY, 7 ) :  

(38) 

-7r 

'5'  +yj(13, q )  dB = H, = HTeikp / f i+  H , 7 e - i k p / G .  
-7r 

F. J = Ht J - G ?  J '  

Since yj(  0, q )  form a complete set, we can express f( e)  as 
m m 

f ( e ) = ; F o c e o ( 4 q ) +  c Flcezn(e,q)+ c J7zce2fl+1(@,q) 
n = l  n = O  

where we have used the normalisation conditions of Mathieu functions. It should be 
pointed out, when we substitute (35)-(37) into (34), that the coefficient of is 

(40) 
n = l  1 - 2  n = O  

which can be proved to be equal to zero (see appendix 1). Now let us calculate the 
terms GI in (35) and the terms HI in (37). 

4.1. Calculation of Gj 

Using formulae 
m 

e i k p s i n ( B + r )  - - J , ( k p )  e im(of r )  
m = - m  
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and 
r: 

y ,  = ce2,(B, q) = A:: cos(2rB) 
r = O  

we get 

cos(2rB) de. e i ( m - 2 a ) t J  I= 

(- 1 ) m + l (  

a3 m 

G I =  1 eimTJm(kp)  A$- 
m=-m r = O  IT -= 

Using the asymptotic approximation 

11- j m ( k p )  - ( e i ( k ~ - m a / 2 - a / 4 )  + e - i ( k p - m x / 2 - r r / 4 )  

and the formula 

1 j: e i ( m - 2 a ) 8  cos(2rB) dB = 

(43) can be written as 

l +  
m - 2 a + 2 r  m - 2 a - 2 r  

s in(2ar )  
I T -  IT 

where 

Substituting (47) into (46) we get 

Putting n = 0 in (48) we obtain Go. Similarly we can obtain 

4.2. Calculation of Hj 

Using (26), (32), (44) and the asymptotic approximation of Y m ( k p ) :  

we obtain 
)/m ym(kp) - ( e i ( k p - m r r / 2 - r r / 4 )  - e - i ( k p - m r / 2 - r / 4 )  
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e i k ~  e-ikp 

6 6 = H :  -+ H ;  - 

e i k ~  e- ikp 

=H:---+HH;- 6 fi 

e ikp  e- ikp 

= H : - + H ; -  6 6 
sin[(2n + 2 ) ~ ]  - -2 s i n [ ( 2 n + 2 ) ~ - 2 a r ]  e-i"/4--2i cia/" 

e i k ~  

6 
e -i kp 

6 6 
e i k ~  

= H:-+H;-. 

(54) 

Using the above results we can obtain 5 from (38), and hence obtain f( e) from 
(39). In appendix 1 we prove that the summation of all the terms involving 
G:, G:, G:, G:, G: equals zero and hence we obtain 

4.3. The case when q is small 

In this case we can expand y j ( e ,  q )  as a power series of q, and so we can do the same 
thing for f( e). From (58) we find the term not containing q is 

e - i 3 r / 4  

fo( e) = s in(2ar )exp  [ -i ( " T + ; ) ] [ c o s ( y + ; ) 3 '  - (59) 

and the term containing the first power of q is 

- COS(T - e)[( r / 2 +  T +  e )  c o s ( 2 a ~ )  - s in(2ar )  
x(cosh-' Isec(T+ e)l+ln12 COS(T+ e)l)]}. (60) 

f ( e )  =fo(e)+f1(e)+0(qZ).  (61) 

The detailed derivation of (59) and (60) is given in appendix 2. In short 

When q = 0 and T = -1~12, 
e- i3n/4  e - i B / 2  

fo( e)  = JT;; s in(2ar )  
COS( e/ 2 
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we obtain the result of Aharonov and Bohm (1959) as expected, the only difference 
being the replacement of a by 2a. 

Neglecting O( q 2 )  we obtain the scattering cross section 

U =  V(e)I2= (Ref(8) )2+(Imf(e) )2  

sin2( 2 a r )  e+7 T 
- - 2T cos? (2 +a> 

cos 8 s i n ( 2 a ~ )  
s in(2ar )  

2T - 4  

-cos(T-e)[ ( ;+T+e)  cos(2ar )  

When T = - ~ / 2  and 2a  = n ++, (63) reduces to 

1 4 
2T COS’( e/2) 2r g = i f ( e ) 1 2 =  -- [2 COS e -c052 e - 2 51n2( 0/2) 

x (cosh-’Icosec 81+1n12 sin el)]. (64) 

In this case, the dependence of U on 8 for q = 0 and q = 0.1 are shown in figure 2. 

- n / 2  -3n18 n 1 4  0 n/L 3n/8 ni2 

e 
Figure 2. Dependence of cr on 0. 
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4.4. n e  case when q>> 1 

When q + m  we know (Mclachlan 1947) that 

A : : / A ; ~  + (-1y2 

B::::/B:~+'+ ( - I ) ~  B ~ : ~ ~ / E : " + ' +  ( - l ) r ( r+  1) (65) 

A : : : : / A : ~ + I +  (-1)r(2r+ 1) 

A;" + 0 A;"+' + 0 B2n+l 1 + o  B:"+2 + 0. 

Hence in this case from (58) we obtain the result 

f ( O ) + O  

which is obvious from the physical point of view. 
When q is large but not yet infinite, we can use the asymptotic formulae for ce, 

and se, when q > 0 is large enough. For simplicity, we only write out the result when 
T = - T / ~  and O = O :  

)'I 2 cos2(2a?T) W 

L+ = I f l '  = T 2 q 1 / 2  [ (+ph+ f l = l  E p: . )*  + (t tan(2m)ph+ n=O pintl  

Acknowledgments 

We would like to thank Professor D H Kobe for helpful discussions and for his 
encouragement. We would also like to thank a referee for suggesting improvements 
to this paper. 

Appendix 1 

Here we give the proof of the following equations: 
m a2 m 

t G h e o ( 4  q ) +  C G:ce2,(4 d +  C ~ : c e ~ , + , ( e ,  d +  C G:sezn+l(& 4 )  
n = l  f l = O  n =o 

(A l . l )  

(Al.2) 

m 

(A1.3) 
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Let us consider the case when q is small, then ceo(z, q )  = 1. Firstly let us calculate 

(A1.4) 

Using the formulae 
X cc 

ce2,(e, q )  = A:: cos(2re) cos(2re) = A::ce,,,(e, q )  (A1.5) 
r = O  n = O  

we obtain 

c 

Similarly we get 

Since the LHS of (Al . l )  is equal to 

(A1.6) 

(A1.7) 

(A1.8) 

then we prove (Al . l )  by (A1.6) and (A1.7). Similarly, since the LHS of (A1.2) is 
equal to 

( x O , l  + c 2 + x 3  + x 4 )  (A1.9) 

we prove (A1.2). By aid of (A1.5) and similar equations, the LHS of (A1.3) can be 
written as 

(i) l j 2  e i2ar  eion+in/4 

(Al .  10) 

and we thus prove (A1.3). Using (A1.2) and (A1.3) we prove that the coefficient (40) 
is equal to zero. With the aid of (Al . l )  we obtain (58). 

Appendix 2. Derivation of (59) and (60) 

In (58) we use the following expansion formulae: 
cos[2(n+l)e]  - cos[2(n-l)e] ( 4(2n+1) 4(2n - 1) 

ce2,,( e, q )  = cos(2ne) - (A2.1) 
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(A2.2) 
cos[(2n +3)8] - cos[(2n - l )e]  ( 4(2n+2) 4 x 2 n  

sin[(2n +3)8]  - sin[(2n - l ) e ]  ( 4(2n+2) 4 x 2 n  

sin[(2n +4)8]  sin(2nB) ( 4(2n+3) 4(2n+1) 

ce2,+,(e ,  4 )  = cosK2n + 1)eI - 

(A2.3) se,,+,(e, q )  =sin[ (2n+l )e] -q  

se2,+,(6, q )  =sin[(2n+2)O]-q - (A2.4) 

Then, collecting the terms not containing q, through quite a tedious calculation, we 
obtain (59): 

- i2an  -cos( 8 + T-2~~77) - s i n ( 2 a r )  
fo(0)=-(e cos(e + T )  cos(e + 7 )  

- i  cos( 0 + T )  - [ 1 +sin( 6 + T)]  

cos( e + T )  

) 
1 

sin( 0 + T +  r / 2 )  -i[ 1 -cos( 8 + T +  r / 2 ) ]  
sin( 8 + T +  r / 2 )  

( e-irr'4 -- - s i n ( 2 a r )  

- - s i n ( 2 a ~ r )  
- i e -in/4 

6 
e x p [ - i ( 8 / 2 + ~ / 2 + ~ / 4 ) ]  -- - s i n ( 2 a r )  

COS( 8/2 + T/2 4 4 )  ' 

When we collect the terms containing the first power of q, the result is 

(A2.5) 

m cos[2(n + l ) e ]  cos[2(n - i ) e ]  - ( 4(2n+1) 4(2n - 1) 
+ ( - l )n+l  2 cos(2n7-2ar)  

n = 1  

- a c o s ( ~ - 2 a r )  sin(38) 

sin[(2n +3)8] sin[(2n - l)O] ( 4(2n+2) 4 x 2 n  
- 

cos[(2n +3)e]  - cos[(2n - l ) e ]  '( 4(2n+2) 4 x 2 n  
5 

+ (-l)flt'2C0S[(2n+1)T-2a7T] 
f l = l  

sin[(2n +4)8]  - sin(2nB) '( 4(2n+3) 4 ( 2 n + l )  
Through a long and tedious calculation we find 

f12)+f(1') = ;  COS(^^ - 2 a r )  -; COS( T - e) 
x [tr c o s ( 2 a r )  - s in(2ar )  cosh-'/sec(T+ @ ) I ]  

fy)+f(16) = a  sin( T +  3 e - 2 a r )  -f cos( T - e) 
x [(T+ e)  cos(2a7r) - s in(2ar )  ln12 COS(T+ e)l] 

f ( 1 3 ) + f ( 1 5 ) =  - a s i n ( ~ + 3 0  -2a77). 

(A2.6) 

(A2.7) 

(A2.8) 

(A2.9) 
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There are seven terms in the large square bracket of (A2.6), represented by f y ’ ,  where 
the superscript j represent the ordinal number of the term. Substituting (A2.7)-(A2.9) 
into (A2.6) we obtain (60). 
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